Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

Identifieur interne : 002D96 ( Main/Exploration ); précédent : 002D95; suivant : 002D97

Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

Auteurs : Hsi-Chuan Chen [États-Unis] ; Quanzi Li ; Christopher M. Shuford ; Jie Liu ; David C. Muddiman ; Ronald R. Sederoff ; Vincent L. Chiang

Source :

RBID : pubmed:22160716

Descripteurs français

English descriptors

Abstract

The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

DOI: 10.1073/pnas.1116416109
PubMed: 22160716
PubMed Central: PMC3248547


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.</title>
<author>
<name sortKey="Chen, Hsi Chuan" sort="Chen, Hsi Chuan" uniqKey="Chen H" first="Hsi-Chuan" last="Chen">Hsi-Chuan Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22160716</idno>
<idno type="pmid">22160716</idno>
<idno type="doi">10.1073/pnas.1116416109</idno>
<idno type="pmc">PMC3248547</idno>
<idno type="wicri:Area/Main/Corpus">002C04</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C04</idno>
<idno type="wicri:Area/Main/Curation">002C04</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C04</idno>
<idno type="wicri:Area/Main/Exploration">002C04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.</title>
<author>
<name sortKey="Chen, Hsi Chuan" sort="Chen, Hsi Chuan" uniqKey="Chen H" first="Hsi-Chuan" last="Chen">Hsi-Chuan Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carboxylic Ester Hydrolases (chemistry)</term>
<term>Carboxylic Ester Hydrolases (metabolism)</term>
<term>Chromatography, Liquid (MeSH)</term>
<term>DNA Primers (genetics)</term>
<term>Hydroxylation (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Membrane Proteins (chemistry)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phenols (MeSH)</term>
<term>Phenylpropionates (MeSH)</term>
<term>Plasmids (genetics)</term>
<term>Populus (metabolism)</term>
<term>Propionates (MeSH)</term>
<term>Trans-Cinnamate 4-Monooxygenase (chemistry)</term>
<term>Trans-Cinnamate 4-Monooxygenase (metabolism)</term>
<term>Xylem (metabolism)</term>
<term>Yeasts (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (génétique)</term>
<term>Carboxylic ester hydrolases (composition chimique)</term>
<term>Carboxylic ester hydrolases (métabolisme)</term>
<term>Chromatographie en phase liquide (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Complexes multiprotéiques (composition chimique)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Hydroxylation (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Levures (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Phénols (MeSH)</term>
<term>Phénylpropionates (MeSH)</term>
<term>Plasmides (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Propionates (MeSH)</term>
<term>Protéines membranaires (composition chimique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Structure moléculaire (MeSH)</term>
<term>Trans-cinnamate 4-monooxygenase (composition chimique)</term>
<term>Trans-cinnamate 4-monooxygenase (métabolisme)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carboxylic Ester Hydrolases</term>
<term>Membrane Proteins</term>
<term>Multiprotein Complexes</term>
<term>Trans-Cinnamate 4-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carboxylic Ester Hydrolases</term>
<term>Membrane Proteins</term>
<term>Multiprotein Complexes</term>
<term>Trans-Cinnamate 4-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carboxylic ester hydrolases</term>
<term>Complexes multiprotéiques</term>
<term>Protéines membranaires</term>
<term>Trans-cinnamate 4-monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amorces ADN</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carboxylic ester hydrolases</term>
<term>Complexes multiprotéiques</term>
<term>Populus</term>
<term>Protéines membranaires</term>
<term>Trans-cinnamate 4-monooxygenase</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Liquid</term>
<term>Hydroxylation</term>
<term>Immunoprecipitation</term>
<term>Kinetics</term>
<term>Mass Spectrometry</term>
<term>Microscopy, Confocal</term>
<term>Molecular Structure</term>
<term>Phenols</term>
<term>Phenylpropionates</term>
<term>Propionates</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide</term>
<term>Cinétique</term>
<term>Hydroxylation</term>
<term>Immunoprécipitation</term>
<term>Levures</term>
<term>Microscopie confocale</term>
<term>Phénols</term>
<term>Phénylpropionates</term>
<term>Propionates</term>
<term>Spectrométrie de masse</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22160716</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>21253-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1116416109</ELocationID>
<Abstract>
<AbstractText>The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hsi-Chuan</ForeName>
<Initials>HC</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanzi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shuford</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Muddiman</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010666">Phenylpropionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8O6NO04SMV</RegistryNumber>
<NameOfSubstance UI="C496130">sinapyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E7SM92591P</RegistryNumber>
<NameOfSubstance UI="C010559">coniferyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.91</RegistryNumber>
<NameOfSubstance UI="D050564">Trans-Cinnamate 4-Monooxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002265">Carboxylic Ester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="C067271">trans-4-coumaroyl esterase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IBS9D1EU3J</RegistryNumber>
<NameOfSubstance UI="C495469">trans-3-(4'-hydroxyphenyl)-2-propenoic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002265" MajorTopicYN="N">Carboxylic Ester Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006900" MajorTopicYN="N">Hydroxylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010666" MajorTopicYN="N">Phenylpropionates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050564" MajorTopicYN="N">Trans-Cinnamate 4-Monooxygenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22160716</ArticleId>
<ArticleId IdType="pii">1116416109</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1116416109</ArticleId>
<ArticleId IdType="pmc">PMC3248547</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Cell Biol. 2011 Apr;13(4):383-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):30-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10045-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jan 15;266(2):735-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1985961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2005 Jan 15;77(2):596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1985 Feb 15;237(1):88-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3970546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 1993 Jan;41(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8417111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2005 Sep;33(9):1382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2010 Mar;147(3):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20068028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 18;144(6):1000, 1000.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Mar 1;6(3):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Oct;4(10):1487-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15979981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2003 May;98(2):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1977 Jan;134(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 3;275(9):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1971 Jun 25;246(12):3870-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4397825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1051-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 28;276(39):36566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11429408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Apr;9(4):789-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3098-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Sep 15;37(37):12852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9737863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(1):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16972868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
<name sortKey="Shuford, Christopher M" sort="Shuford, Christopher M" uniqKey="Shuford C" first="Christopher M" last="Shuford">Christopher M. Shuford</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Chen, Hsi Chuan" sort="Chen, Hsi Chuan" uniqKey="Chen H" first="Hsi-Chuan" last="Chen">Hsi-Chuan Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22160716
   |texte=   Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22160716" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020